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The current era emphasizes system productivity to meet global demand. The  
productivity index is closely tied to the reliability of the manufacturing process.  
To keep up with today’s manufacturing demands, inspection systems on the 
production line must prioritize both speed and quality. However, a key challenge in 
automated inspection is achieving a balance between high defect detection accuracy 
and minimizing false positives and false negatives. To address this, this study  
investigates the effectiveness of deep learning-based models for defect detection 
in Pulsed Thermography (PT) using a publicly available dataset of PVC specimens. 
Pulsed Phase Thermography (PPT) was applied to the raw thermograms to  
generate phase images and evaluate the performance of conventional methods.  
Two models were trained and evaluated for defect detection: a pre-trained  
YOLOv8 object detection model and a semantic segmentation model from Halcon. 
The YOLOv8 model demonstrated a high precision of 97.1%, but with a recall  
of 82%, indicating that it accurately detected defects but missed some. In contrast,  
the Halcon model achieved perfect recall (100%) but lower precision (78.2%),  
suggesting that it detected all defects but also introduced a significant number of 
false positives. The results highlight the trade-offs between precision and recall in 
these models, with YOLOv8 focusing on accuracy and Halcon on comprehensive 
defect detection. This study demonstrates the potential of deep learning techniques in 
enhancing defect detection performance in Pulsed Thermography applications.
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1. Introduction

Non-Destructive Testing (NDT) has evolved 
over the past century, beginning with basic 
methods like visual inspection and penetrant 
testing in the early 20th century, followed by the 
introduction of radiography, magnetic particle 
testing, and ultrasonic testing during World War II.  
By the 1950s, eddy current testing and acoustic  
emission methods gained traction in industries 
like aerospace and nuclear power. The advent 
of computerization in the 1970s revolutionized 
NDT through advanced imaging techniques like 
phased array ultrasonics and thermography 
(Vavilov & Burleigh, 2015). Every NDT method has 
its own merits and demerits, and therefore, their  
application in the industry varies. However, one 
of the major requirements in the manufacturing 
industry is to have an automated NDT system 
that can be used for safe in-situ testing of larger 

manufactured parts. In this regard, active 
thermography can have an advantage over other 
methods. Today, artificial intelligence, machine 
learning, and Industry 4.0 technologies are 
transforming NDT by enabling automated defect 
detection and predictive maintenance, ensuring 
the integrity of critical components in sectors 
such as aerospace, energy, and manufacturing. 
The world has started realizing the tremendous 
data processing and interpretation capabilities 
of machine learning and deep learning models 
which can remarkably enhance the defect 
detection capability. Therefore, in this study, 
two deep learning-based models were applied 
to thermograms made publicly available by Wei 
et al. (2023), which were obtained using Pulse 
Phase Thermography. A comparative analysis 
was conducted between the commercially used 
HALCON deep learning model and the open-source 
YOLOv8 model. Based on a review of the literature, 
this comparison appears to be novel, as similar 
studies have not yet been undertaken.
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2. Methodology

2.1. Pulse thermography

Pulse Thermography (PT), also known as flash 
thermography, is a type of Active Thermography 
used to detect subsurface defects in materials.  
It involves applying a short heat pulse and 
analyzing the thermal response as shown in  
figure 1. When the heat front encounters 
anomalies in the material, the local temperature of 
the non-uniform region heats unevenly compared 
to the uniform region, creating a heat gradient. 
This causes the heated non-uniform region to 
diffuse heat, which can be observed on the surface 
of the sample (Almond & Lau, 1994). An infrared 
camera is used to detect sub-surface anomalies 
since most of the energy lies in the infrared region. 
Pulse thermography allows for faster inspection 
compared to other active thermography methods, 
but it requires more power and may result in 
noisier thermograms (Ciampa et al., 2018). 

2.2. Dataset preparation for processing

The online available thermograms of PVC  
specimens with artificial defects were captured 
from a FLIR SC5000 MWIR camera at a frame 
rate of 10 Hz with a resolution of 320 x 256(Wei 
et al., 2023). The authors created 19 different 
specimens with each specimen of size 100 mm 
× 100 mm × 5 mm, with flat-bottom holes of 
varying sizes as shown in figure 2. The 1810 frames 
of each specimen were stored in an array of 
320x256x1810 size in a .mat file. Each pixel value 
format is stored in a uint16 format. Each image 
sequence was extracted, normalized with min- 
max normalization and stored in .png format so 
that the annotation process could be easily done. 
The localization and annotation of the defects  
were done with the help of an online available 
labelling tool called makesense.ai (Skalski, 2019). 
The defect’s locations in the image were saved 
in YOLO-compatible .txt and .csv by annotating 
the defects by creating bounding boxes around 
them. Only two classes of labels were used to 
annotate the data viz. Defect and Good. A total of 
1819 images were initially manually annotated.  
Due to the equal proportion of defects and good 
images, a random split was performed with an 
80:10:10 ratio for the training, test, and validation 
sets, respectively.

2.3. Pre-processing

Predominantly, the raw thermograms need 
pre-processing to derive meaningful information 
from it, as the images can suffer from non-uniform 

Fig. 1. A typical setup for pulse thermography.

Fig. 2. Eight different specimen views from the bottom (Wei et al., 2023).
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heating, and non-uniform emissivity of the  
sample. The observed features can also sometimes 
appear blurry, not because of the limitation  
posed by the infrared camera but due to the 
inherent nature of heat transfer in solids; as 
the local temperature of the defective region 
starts conducting the heat in all directions, this 
phenomenon can make the defects, difficult to 
characterize. In the past few decades, researchers 
have come up with several methods to reduce  
these effects and increase SNR. Researchers 
observed that the phase images are not only 
inherently robust against non-uniform heating  
but also can probe deeper defects, thus the 
application of the Fourier transform and other 
methods, such as the 4-bucket method, which 
can derive the phase information from the raw 
thermograms, have become a go-to tool for 
processing thermograms. The application of the 
Fourier transform in pulse thermography was 
introduced by Maldague & Marinetti and termed 
it Pulse Phase thermography (PPT) (Maldague 
& Marinetti, 1996). Apart from analyzing phase 
images, researchers have also used several matrix 
factorization-based methods such Principal 
Component Analysis (Rajic, 2002), Sparse-PCA  
(Wu et al., 2018), Independent Component  
analysis (Liu et al., 2019), etc. which can  
significantly reduce its dimensionality while  
capturing the most important information. In 
this paper, Pulsed-Phase Thermography has also  
been applied and the results are shown in the 
subsequent section. However, the phase images  
were not taken for training deep learning models 
because of the smaller number of phase images  
with visible defects.

2.4. Deep learning architectures

In earlier days, pre-processing and defect 
detection algorithms used to be different as these 
conventional-based methods were based on fixed 
rules; however, since the inception of data-driven 
modelling, the line between these two tasks has 
become blurred. Among all Machine learning 
algorithms, the performance of deep learning  
(DL) models especially Convolutional Neural 
Networks (CNN) has been most promising in the  
field of computer vision as they tend to learn 
information about images in a hierarchical manner 
and resemble how humans learn and perceive 
information (Goodfellow, et al., 2016). There 
are also several key advantages that give the DL 
model an edge over other ML models that can be 
used for classification; one of the major merits 
of the DL model is that it doesn’t require manual  

feature engineering like most ML models such 
as Support Vector Machine, Decision Tree, etc. 
These models are more robust against object 
appearance, scale and orientation (Goodfellow 
et al., 2016). For object detection tasks there are 
several single-stage and two-stage detectors that 
have been widely used by DL community. In this 
paper, two deep learning pre-trained models  
has been utilized, viz., the object detection 
model of YOLOv8 and the segmentation model 
of HALCON. Comparing an open-source model 
like YOLOv8 with a proprietary, fine-tuned model 
like HALCON provides insight into the potential of 
open-source tools in settings where commercial 
software is typically used. This contrast could be 
important for cost-benefit analysis, performance 
benchmarking, or other practical applications in 
industrial inspection or defect detection. 

•	 YOLOv8

YOLO (You Only Look Once) is a widely used object 
detection and segmentation model, originally 
developed by Joseph Redmon and Ali Farhadi at 
the University of Washington in 2016 (Redmon 
& Farhadi, 2017). YOLOv8 (You Only Look Once 
version 8) is a pre-trained object detection model 
developed by Ultralytics (Ultralytics, 2023). It 
predicts the bounding box and class probabilities 
of the object in a single forward pass, although 
this feature can affect the accuracy but it can 
greatly boosts up the inference time. One can 
broadly divide the YOLOv8 architecture layers  
into backbone, neck and head. The backbone 
layer is responsible for extracting features; 
YOLOv8 uses a variant of the CSPNet (Cross-Stage 
Partial Network) to improve information flow 
between layers and boost accuracy. The neck is 
responsible for merging feature maps. Instead of a  
traditional feature pyramid, a C2F module is 
used, which helps combine higher-level semantic 
features with lower spatial information. The  
head is responsible for the final detection. YOLOv8 
uses decoupled heads for classification and 
localization, meaning different branches handle 
object classification and bounding box regression, 
improving the model’s efficiency. 

In this paper, the YOLOv8s pre-trained model 
has been utilized, which balances computational 
requirements and performance. YOLOv8 was 
chosen over models like SSD (Single-Shot Detector) 
and Faster R-CNN due to its balance of speed, 
accuracy, and flexibility, which aligns well with 
the demands of real-time, high-performance 
applications. Unlike Faster R-CNN, which is more 
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complex and slower due to its two-stage process, 
YOLOv8 offers rapid object detection without 
sacrificing much in accuracy, making it ideal for 
applications where quick response times are 
essential. Compared to SSD, YOLOv8 achieves 
improved localization and detection performance, 
especially for small or overlapping objects,  
thanks to its advanced backbone architecture 
(Huang et al., 2016). 

•	 HALCON Model

The other model that was utilized for our 
objective was the semantic segmentation model 
from HALCON, which utilizes encoder-decoder 
architecture, as shown in figure 4. The encoder-
decoder model is ideal for semantic segmentation 
due to its ability to handle the dual tasks of 
extracting meaningful features while preserving 
spatial information (Shelhamer, et al., 2017). 
The encoder reduces the image to key abstract  
features, and the decoder restores resolution, 
enabling pixel-level predictions that are crucial 
for segmentation tasks. Unlike standard 
object detection (bounding boxes), semantic  
segmentation requires classifying each pixel in 
the image, which means the model needs to 
understand both global context and fine-grained 
details (Follmann, et al., 2018)

2.5. Performance metrics

Performance metrics are important tools to 
quantify the efficiency and performance of the 
object detection model, some of the widely 
used metrics for classification tasks are accuracy, 
precision and recall (Géron, A. 2019).

•	 Precision

It is the ratio of correctly predicted positive 
observations to the total predicted positives. It 

measures how many of the predicted positive 
instances are actually positive. Precision is 
important when false positives are costly.

 

true positives

true positives + false positives
Precision =

•	 Recall

Also known as Sensitivity or the true positive 
rate and sometimes also referred as Probability 
of Detection. It is the ratio of correctly  
predicted positive observations to all actual 
positives in the dataset. It measures how many  
of the actual positive instances the model  
correctly identifies.

 

true positives

true positives + false negatives
Recall =

			 
•	 F-Score

The F-score, also known as the F1 score, is a 
metric used to evaluate the accuracy of a model 
by combining precision and recall into a single 
measure. Defined as the harmonic mean of 
precision and recall, the F-score is calculated as 
follows:

 

(Precision*Recall)

(Precision+Recall)
F-Score=2 * 

This measure provides a balanced view of a 
model’s performance, particularly in scenarios 
where precision and recall may be inversely 
related. The F-score is particularly useful for 
evaluating classification models in situations with  
imbalanced data, as it ensures that both false 
positives and false negatives are considered in 
assessing model effectiveness.

Fig. 4. Semantic segmentation model.

112*112*128
224*224*3

28*28*512

7*7*4096

28*28*Classes

(R.G.B.)

7*7*Classes
14*14*Classes

14*14*Classes
7*7*4096

28*28*Classes

224*224*Classes

14*14*Classes

14*14*512

28*28*Classes

224*224*64

56*56*256 Convolution, RetU

Max Pooling,
Convolution, RetU

Convolution

Convolution
Transpose, Softmax

Sum



Manufacturing Technology Today, Vol. 23, No. 9-10, Sep-Oct 20246

Technical Paper

3. Results and Discussions

3.1. Pulse phase thermography

To extract phase information from the raw 
thermograms, a one-dimensional Discrete Fourier 
Transform was applied at every pixel using a  
Fast Fourier Transform. Among the total of 12 
defects, only 9 defects were visible in the phase 
images at lower frequencies, which conveys that 
the majority of the defects were deeper and 
at nearby depths. The maximum contrast was 
observed at 0.044 Hz. Figures 5 and 6 show the 
mask and phase images, respectively.

3.2. Object Detection results of YOLOv8 and 
HALCON model

A total of 50 images of different defect classes 
were used during the inference, which were not 
included in the training. The results in Table 1  
show the averaged performance metrics on 
inferred images. The results were promising, as  
the YOLOv8 model was able to identify almost 
all the defects, as shown in Figure 7. However,  
it missed some obvious visible defects, which 
may indicate that the model is slightly overfitting. 
On the other hand, Halcon was unable to mark 
boundaries for the defects clearly and was  
merging the defective areas with the good ones, as 
shown in Figure 8. 

From Table 1 one can observe that YOLOv8 is very 
precise, but its recall is lower, meaning it misses 

Fig. 6. Phase image of z004 specimen at  
0.044 Hz frequency. Only 9 defects are visible out of 12.

Fig. 5. Mask image of Z004 specimen  
(depicting locations of all the defects in the specimen).

Fig. 8. Segmentation results of HALCON model.

Fig. 7. Object detection result of YOLOv8.
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Table 1 
Training parameters and results of YOLOv8s and HALCON semantic segmentation model.

Model Training Parameters Precision Recall/ 
PoD F-Score Hardware Training 

Time

YOLOv8s object 
detection model

Epoch = 100,
Optimizer = AdamW,
Learning Rate = 
0.001667,
Batch Size = 8,

97.1 % 82 % 88%

Intel Xeon 
W-2245 CPU @ 
3.90GHz,
RAM: 32.0 GB
Trained on 
NVIDIA T1000, 
4096MiB

1.203 
hours

HALCON 
Semantic 
Segmentation 
Model

Epoch = 100,
Learning Rate = 
0.0001
Batch Size = 16
Momentum = 0.99

78.2 % 100 % 87%

Processor: 
Intel Xeon, CPU 
E5-2667 v3 @ 
3.20GHz, 
RAM: 32.0 GB

9 hrs

some defects. The model is highly confident 
about the detections it makes but doesn’t  
catch all defects, which could indicate that the 
model is conservative in making predictions to 
avoid false positives. This is further supported  
by the F-score of 88%, which reflects a balanced 
but selective performance that prioritizes  
accuracy in defect identification over exhaustive 
coverage. Halcon has perfect recall but lower 
precision, meaning it detects all defects but also 
makes more false positives, identifying some 
non-defective areas as defective. The model’s 
F-score of 87% indicates strong performance, 
though it is slightly lower than YOLOv8’s, 
highlighting HALCON’s more aggressive approach 
in defect detection, aiming for comprehensive 
coverage at the cost of selectivity:

1.	 YOLOv8 is more selective, focusing on accuracy 
but missing some defects.

2.	 Halcon detects all defects but is less selective, 
leading to more false alarms

4. Conclusion

In this study, we evaluated the performance of  
deep learning-based models and conventional 
methods for defect detection in Pulsed 
Thermography. The results highlight the distinct 
advantages and limitations of each approach. 
The phase-based analysis revealed that only a 
portion of the total defects was visible at lower 
frequencies, with most defects being deeper  
and located at nearby depths. In comparison, 
the deep learning models, specifically YOLOv8 

and Halcon model, demonstrated different 
strengths in terms of precision and recall. YOLOv8 
excelled in precision but missed some defects, 
while Halcon ensured complete detection at the 
expense of higher false positives. The comparison 
of conventional and deep learning methods 
underscores the potential of using deep learning 
techniques for automating and enhancing defect 
detection. However, the trade-off between 
precision and recall remains, suggesting room for 
optimization depending on the use case.
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