Fabrication of PDMS soft stamps for nanoimprint lithography (NIL)

Authors

  • J. Pradyumna Central Manufacturing Technology Institute, Bengaluru, Karnataka, India
  • K. Shashank Kumar Central Manufacturing Technology Institute, Bengaluru, Karnataka, India
  • Sanjana S. Kanguri Central Manufacturing Technology Institute, Bengaluru, Karnataka, India
  • P. Bharath Central Manufacturing Technology Institute, Bengaluru, Karnataka, India

DOI:

https://doi.org/10.58368/MTT.23.5-6.2024.13-18

Keywords:

Polydimethylsiloxane (PDMS), Nanoimprint Lithography (NIL), Micro-Engineering, Soft Lithography, Soft Stamps

Abstract

Polydimethylsiloxane (PDMS) elastomers are widely utilized for replicating microstructures in microfluidic and micro-engineering applications using. This study presents a method for fabricating polydimethylsiloxane (PDMS) soft stamps utilized for nanoimprint lithography (NIL). PDMS is favoured due to its mechanical properties, ease of fabrication, and compatibility with various substrates. The study investigates the fabrication process, challenges regarding durability, and implications for pattern fidelity in NIL applications and assess the quality of these stamps based on pattern accuracy and replication precision showcasing their possible uses in nanotechnology and microfabrication. The results indicate that PDMS soft stamp demonstrates excellent flexibility and conformability, enabling effective imprinting onto various substrates which can be used as a feasible option for scalable and cost-efficient NIL procedures.

Metrics

Metrics Loading ...

References

Chandramohan, A., Cooke, M., Mendis, B., Petty, M., Gallant, A., & Zeze, D. (2014). Low cost composite PDMS/h-PDMS stamps for nanoimprint lithography. Presented at Micro and Nano Engineering (MNE), Lausanne, Switzerland

Chou, S. Y., Krauss, P. R., & Renstrom, P. J. (1996). Imprint Lithography with 25-Nanometer Resolution. Science, 272, 85-87. DOI:10.1126/ science.272.5258.85

Chuang, H. S., & Wereley, S. (2009). Design, fabrication and characterization of a conducting PDMS for microheaters and temperature sensors. Journal of Micromechanics and Microengineering, 19(4), 045010.

Konku-Asase, Y., Yaya, A., Kan-Dapaah, K. (2020). Curing temperature effects on the tensile properties and hardness of γ −Fe2O3 reinforced PDMS nanocomposites. Advances in Materials Science and Engineering, 2020. https://doi. org/10.1155/2020/6562373

Lin, L., & Chung, C. K. (2021). PDMS microfabrication and design for microfluidics and sustainable energy application: Review. Micromachines, 12(11), 1350. https://doi.org/10.3390/mi121 11350

Qin D, Xia Y, & Whitesides G, M. (2010). Soft lithography for micro- and nanoscale patterning. Nat Protoc. 5(3), 491-502. doi: 10.1038/ nprot.2009.234. Epub 2010 Feb 18. PMID: 20203666.

Rolland, J. P., Hagberg, E. C., Denison, G. M., Carter, K. R., & De Simone, J. M. (2004). High- resolution soft lithography: Enabling materials for nanotechnologies. Angewandte Chemie (International ed. in English). 43, 5796-5799. 10.1002/anie.200461122.

Wisser, F. M., Schumm, B., Mondin, G., Grothe, J., & Kaskel, S. (2015). Precursor strategies for metallic nano- and micropatterns using soft lithography. Journal of Materials Chemistry C 3, (12). https://doi.org/10.1039/c4tc02418d

Zhou, J., Ellis, A. V., & Voelcker, N. H. (2010). Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis, 31(1), 2-16. doi: 10.1002/elps.200900475. PMID: 20039289.

Downloads

Published

01-05-2024

How to Cite

Pradyumna, J., Shashank Kumar, K., Kanguri, S. S., & Bharath, P. (2024). Fabrication of PDMS soft stamps for nanoimprint lithography (NIL). Manufacturing Technology Today, 23(5-6), 13–18. https://doi.org/10.58368/MTT.23.5-6.2024.13-18

Most read articles by the same author(s)